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The conditions of disintegration of structured formations occurring in disperse systems of the solid-dis-
persed-phase–liquid-dispersion-medium type, increasing their effective viscosity and inhibiting the attainment
of a high fluidity by the dispersions, have been investigated. The role of inertial effects in attainment of
the isotropic dynamic state by S/L disperse systems, when external vibration action is applied to them, has
been studied. It has been shown in what manner the presence of particles of different mass (and conse-
quently inertia) in the system leads to a disintegration of the structure under the action of dispersion-me-
dium oscillations.

Introduction. The attainment of a high fluidity by disperse systems of the solid-phase–liquid-medium (S/L)
type is ensured due to the realization of an isotropic dynamic state eliminating the occurrence of inhomogeneities in
the form of aggregates and structured layers in motion of the dispersion. The disintegration of such structural elements
in disperse systems with particles larger than 1 µm in size, which are incapable of disintegrating under the action of
Brownian motion of particles, may be carried out by imparting forced vibrations from an external source to the system
[1]. The problem on determination of the parameters of vibration actions necessary for disintegration of a coagulation
structure is posed in [2–4], where the necessary condition of attainment of the isotropism of structural disintegration is
also given. What this condition means is that the energy supplied to a disperse system and transferred by the particles
fixed in the structural network must be higher than the total energy of bond of the particles with the neighboring par-
ticles.

In this work, consideration is given to another aspect of the problem of disintegration of structured formations
inhibiting the high fluidity of the dispersion, namely, the role of inertial effects in attainment of the isotropic dynamic
state by S/L disperse systems.

Equation of Motion of a Free Particle in an Oscillating Liquid. A number of aspects of the motion of a
free particle in an oscillating liquid were the focus of [5, 6]. Solution of this problem in general form requires that
many effects be allowed for. Thus, the influence of the inertial component of the friction force acting on a fast mov-
ing particle on the source side of an ideal liquid can be expressed by the increase in the effective mass of the particle
by the value of the additional mass of the liquid [7, 8]. The slippage of a medium relative to the particle surface is
allowed for by introduction of the corresponding coefficient. The slip effect is the most pronounced for particles with
a lyophobic surface that move with higher velocities relative to the dispersion medium [9]. In the present work, con-
sideration is given to the simplest case where only the Stokes viscous force acts on a particle and there is no slippage
between the medium and the particle. A certain simplification of the actual situation does not largely change the pat-
tern of the process but enables one to obtain the analytical solutions of the equations of motion, thus demonstrating
most easily and clearly the main idea of the work.

We will assume that the harmonic oscillations of a liquid medium in the direction of the vertical coordinate
y follow the law
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y
liq

 = a sin (ωt) . (1)

Then the speed of such oscillations is equal to

v
liq

 = aω cos (ωt) . (2)

Let us consider a single particle of mass m contained in a liquid which executes harmonic oscillations by the
law (1). A viscous force which is in proportion to the difference of the liquid and particle velocities and makes the
particle execute oscillatory motions will act on the particle on the source side of the liquid in the laminar-regime ap-
proximation. We write the equation of motion of the particle:

m 
dv
dt

 = − 3πηd (v − v
liq) . (3)

If it is necessary to allow for the inertial component of the force of resistance from the liquid, instead of the
quantity m in Eq. (3) we should use the sum of the particle mass and the additional liquid mass, which is equal to
half the mass of the displaced medium in the case of a spherical particle: m = mp + πd3ρliq/12.

We will assume that the particle is stationary at the initial instant of time, i.e., v(0) = 0. Substituting expres-
sion (2) into Eq. (3) and introducing the notation k1 = −3πηd ⁄ m and k2 = −aωk1, we obtain the following differential
equation:

dv
dt

 = k1v + k2 cos (ωt) . (4)

The solution of Eq. (4) is the expression for the particle velocity:

v (t) = 
k1k2 exp (k1t) − k2 [k1 cos (ωt) − ω sin (ωt)]

k1
2
 + ω2  . (5)

Integration of Eq. (5) yields the dependence of the particle’s coordinate on time:

y (t) = 
k2 [ω exp (k1t) − k1 sin (ωt) − ω cos (ωt)]

ω (k1
2
 + ω2)

 . (6)

Using Eqs. (5) and (6), we can evaluate the influence of a number of parameters on the capacity of the particle for
executing oscillatory motions under the action of dispersion-medium oscillations.

Figure 1 shows the oscillations (calculated from Eq. (6)) of particles of different diameters in the dispersion
medium with a varying viscosity. The calculations show that, as the diameter increases, the increase in the mass and

Fig. 1. Oscillations of particles of different size under the action of oscillation
of the dispersion medium of different viscosity (ρ = 2600 kg/m3, ν = 100 Hz,
and a = 1⋅10−4 m, 1) d = 10; 2) 50; 3) 100 µm): I) η = 1⋅10−3 Pa⋅sec; II)
η = 2⋅10−4 Pa⋅sec.

1007



consequently inertia of the particles leads to a decrease in their oscillation amplitude. Thus, particles of diameters 10
and 50 µm (Fig. 1 I, curves 1 and 2) move virtually in step with the oscillations of the medium. The amplitude of
their motion almost totally coincides with the amplitude of liquid oscillations. A particle of size 100 µm, due to its
large mass and inertia, lags behind the oscillations of the medium. It is clear from the figure that not only are the os-
cillations of this particle executed with a smaller amplitude but they are somewhat out of phase. This suggests the
time lag of the oscillations of the particle in relation to the oscillating liquid. Such a lag is also attributable to the in-
crease in the relaxation time of particles with diameter; this increase becomes comparable to the time of action on a
particle (τi D ρd2 ⁄ η = 2⋅103⋅(10−4)2 ⁄ 10−3 = 2⋅10−2; the period of oscillations of the liquid is τliq = 1/ν = 10−2). The
reduction in the medium’s viscosity (Fig. 1 II) leads to a decrease in the viscous force acting on the source side of
the moving liquid on a particle, due to which the inertial effects in the system become more pronounced. The lag of
the oscillations of particles behind those of the medium manifests itself for a smaller particle size. Thus, a particle of
diameter 50 µm corresponding to curve 2 (the more so a particle of 100 µm) executes oscillations with an amplitude
much smaller than the amplitude a of oscillations of the liquid.

Figure 2 demonstrates the influence of the frequency of oscillations of the dispersion medium on the motion
of a particle. A comparison of the curves calculated for different values of the frequency enables us to infer that the
increase in the oscillation frequency enhances the lag of particles. The time of action on a particle is reduced in this
case; it becomes shorter than the time of its relaxation.

Expression for the Amplitude of Oscillations of a Particle. It is of interest to find an expression for the
amplitude of oscillations of a particle. An analysis of Eqs. (5) and (6) shows that the exponential term in them re-
sults from the noncoincidence of the velocities of the particle and the medium at the initial instant of time. It had
been taken above that the particle is at rest at t = 0, whereas, according to (2), the liquid moves with a velocity
aω. This asynchronism in motion disappears with time and the amplitude of particle oscillations becomes constant.
Mathematically this means that the exponential term disappears from Eqs. (5) and (6); at t → ∞, we have exp (k1t)
→ 0, since k1 < 0.

Thus, particle oscillations in the steady-state regime are described by the following equations:

v (t) = − 
k2

k1
2
 + ω2 [k1 cos (ωt) − ω sin (ωt)] , (7)

y (t) = − 
k2

ω (k1
2
 + ω2)

 [k1 sin (ωt) + ω cos (ωt)] . (8)

Fig. 2. Influence of the vibration frequency of the dispersion medium on the
oscillation amplitude of particles (d = 100 µm, η = 1⋅10−3 Pa⋅sec, a = 1⋅10−4

m, and ρ = 2600 kg/m3): I) ν = 10; II) 50; III) 100 Hz.
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The substitution of the solution of the equation v(t) = 0 that has been obtained by setting (7) equal to zero
into (8) yields the amplitude values of the coordinate of the particle

A = 
k2

ω√k1
2 + ω2

 = 
3πηda

mω √1 + 




3πηd
mω





 2

 = 
λa

√1 + λ2
 . (9)

The dimensionless parameter λ = 
3πηd

mω
 = 

9η
πd2ρν

 characterizes the capacity of the particle to react to the oscillations

of the medium.
The factor of proportionality between the amplitudes of liquid and particle oscillations in Eq. (9) is equal to

λ ⁄ √1 + λ2 . Its dependence on the parameter λ is presented in Fig. 3, from which it is clear that the coincidence of
the liquid and particle amplitudes is observed approximately for λ > 4. For λ < 4, the amplitude of particle oscillations
becomes appreciably smaller than the amplitude of liquid oscillations; this difference is the more significant, the lower
the λ. Figure 4 shows (in the coordinates ν–d) the curves obtained for λ = 4 for different disperse systems and sub-
dividing of the coordinate plane into two regions. In the region below the curve, the particle oscillates with the same
amplitude as the dispersion medium (λ > 4). In the region above the curve (λ < 4), we no longer observe such a coin-
cidence and the lag of the particle behind the medium manifests itself. Figure 4 also plots the points corresponding to
different cases given in Figs. 1 and 2. Each of these cases is characterized by its own diameter of particles and the
frequency of oscillations of the quartz–water disperse system. It is seen that the difference between the particle oscil-
lations and the liquid oscillations is the most pronounced only for the point with coordinates d = 100 µm and ν = 100
Hz, which is consistent with the results of Figs. 1 and 2.

It is noteworthy that the dependence of the factor of proportionality between the amplitudes of oscillations of
the medium and the particle on the parameter λ is universal in character, i.e., is related to neither the properties of a
specific disperse system nor the characteristics of vibration action. All these quantities are directly involved in the pa-
rameter λ; the relationship between λ and the amplitude ratio A/a remains constant.

Discussion of the Results. The importance of this reasoning lies in the fact that the dimensionless number
λ is in essence the criterion from which we can judge the possibility of disintegration of the structures and aggregates
in the dispersion. The parameter λ enables us to formulate two conditions on satisfying which we can draw a conclu-
sion on the possibility of disintegration of structured formations: 1) the particles composing the disperse system must

Fig. 3. Factor of proportionality λ √1 + λ2  between the amplitudes of oscilla-
tions of a particle and the medium as a function of the dimensionless pa-
rameter λ.

Fig. 4. Curves λ = 4 in the particle diameter–oscillation frequency coordinates
for the quartz–water (1) (ρ = 2600 kg/m3) and carbon–water (2) (ρ = 1350
kg/m3) systems. The points correspond to the cases shown in Figs. 1 I and 2
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be characterized by different values of λ; the wider the range of variation of λ, the faster and more efficient the dis-
integration of the structure; 2) the dispersion must contain a certain number of particles with λ < 4.

The physical meaning of the first condition is that particles with a varying inertia toward external action, i.e.,
with a varying mass, must be contained in the system. If the particles composing the solid phase are homogeneous in
density, the first condition means that it is only the polydisperse systems with a wide range of variation of particle
diameters that are capable of disintegrating under the action of vibration. Variously sized particles tend to oscillate
with different amplitudes, which generates a shift of the particles forming the structure relative to each other, causing
the structure to disintegrate. What the second condition means is that an efficient structural disintegration requires that
high-inertia particles whose oscillation amplitude is much smaller than the oscillation amplitude of the medium be part
of the dispersion. It is precisely such particles that mainly destroy the structure, even such a structure that is formed
by fine monodisperse particles (i.e., by particles of low and equal inertia). From Fig. 4 it is clear that the presence of
particles with a size no smaller than 60 µm is necessary for the quartz–water system with an oscillation frequency of
100 Hz. If this system does not contain such large particles and consists of finer ones, even if of different size, dis-
integration of its structure under the action of vibration with a frequency of 100 Hz is impossible; it occurs at higher
frequencies. For the carbon–water system, structural disintegration is even more complicated, i.e., it can be realized due
to the higher-frequency oscillations and requires that larger particles be present.

It should be added to what has been said above that the possibility of structural disintegration can be deter-
mined by one condition if each particle in the system is characterized by the factor of proportionality β = λ √1 + λ2

between the amplitudes of oscillations of the liquid and the particle A = βa and not by the parameter λ. The structure
is capable of disintegrating if the particles forming it are characterized by different values of β. The second condition
becomes unnecessary in such a formulation, since the relative difference of the particle amplitudes is already charac-
terized directly by the parameter β. Thus, for two particles with different values of β we have

 
β1 − β2

β1
 = 

A1
 ⁄ a − A2

 ⁄ a
A1

 ⁄ a
 = 

A1 − A2

A1
 .

It should be borne in mind that the quantities A1 and A2 are the oscillation amplitudes of free, i.e., not mu-
tually interacting, particles; the actual amplitudes can be smaller because of the attractions between the particles. What
this means is that the criteria formulated only point to the possibility of disintegration of structured formations.
Whether the structure will actually disintegrate depends on its strength determined by the forces of interparticle inter-
action. To overcome these forces it is required that the energy supplied in the course of vibration action be sufficient
for breaking of coagulation contacts [2–4]. In other words, the criteria obtained are necessary but not sufficient condi-
tions for disintegration of the structure of S/L disperse systems.

Conclusions. Thus, when external vibration action by means of the oscillations of a dispersion medium is ap-
plied to the S/L disperse system, we can observe a lag of the particle oscillations behind the medium’s oscillations in
both amplitude and phase. This lag is the more considerable, the larger the mass of a particle, the higher the oscilla-
tion frequency of the medium, and the lower its viscosity. It is precisely owing to the fact that such a lag manifests
itself differently for different particles that the disintegration of a coagulation structure formed by these particles is
made possible. If all the particles of the system executed oscillations exactly "in time" with each other, structural dis-
integration under the action of vibration would be absolutely impossible. The necessary condition of disintegration of
the dispersion structure can be formulated more rigorously if each particle in the disperse system is characterized by
the factor of proportionality β between the amplitude of its natural oscillations and oscillations of the medium. This
factor is a function of the properties of the disperse system and the parameters of vibration action. The disintegration
condition is that the particles forming the coagulation structure must be characterized by different values of β. The
more considerable is such a difference, the faster and more efficient is the disintegration of the structure.

In the present work, consideration has been given to systems consisting of particles of a regular spherical
shape. The capacity of structures and aggregates for disintegrating under vibration action certainly depends on the de-
gree of anisometry of the particles. The particle shape largely determines the value and character of the hydrodynamic
forces acting on them. When the degree of anisometry is high, we have not only the relative displacement of particles
but also a more complex translational–rotational motion of them, which results in a faster disintegration of aggregates.
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NOTATION

a, amplitude of oscillations of a dispersion medium, m; A, amplitude of oscillations of a particle, m; d, di-
ameter of a particle, µm; k1 = −3πηd ⁄ m; k2 = −aωk1; m, effective mass of a particle, kg; mp, mass of a particle, kg;
t, time, sec; v, linear speed of particle oscillations, m/sec; vliq, linear speed of dispersion-medium oscillations, m/sec;
y, displacement of a particle in oscillations, m; yliq, displacement of the dispersion medium in oscillations, m; β, factor
of proportionality between the amplitudes of the medium and a particle; η, viscosity of the dispersion medium, Pa⋅sec;
λ, dimensionless parameter; ν, frequency of oscillations of the medium, Hz; ρ, density of a particle, kg/m3; ρliq, den-
sity of a dispersion medium, kg/m3; τi, relaxation time of inertial motion of a particle, sec; τliq, period of oscillations
of the dispersion medium, sec; ω, angular frequency of oscillations of the medium, rad/sec (ω = 2πν). Subscripts and
superscripts: liq, liquid; i, inertial motion; p, particle.
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